REGULARIZING PRIORS FOR LINEAR INVERSE PROBLEMS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerated Newton-Landweber Iterations for Regularizing Nonlinear Inverse Problems

In this paper, we investigate the convergence behaviour of a class of regularized Newton methods for the solution of nonlinear inverse problems. In order to keep the overall numerical effort as small as possible, we propose to solve the linearized equations by certain semiiterative regularization methods, in particular, iterations with optimal speed of convergence. Our convergence rate analysis...

متن کامل

Ill-Posed and Linear Inverse Problems

In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.

متن کامل

A Statistical Method for Regularizing Nonlinear Inverse Problems

Inverse problems are typically ill-posed or ill-conditioned and require regularization. Tikhonov regularization is a popular approach and it requires an additional parameter called the regularization parameter that has to be estimated. The χ method introduced by Mead in [8] uses the χ distribution of the Tikhonov functional for linear inverse problems to estimate the regularization parameter. H...

متن کامل

Aggregation for Linear Inverse Problems

In the framework of inverse problems, we consider the question of aggregating estimators taken from a given collection. Extending usual results for the direct case, we propose a new penalty to achieve the best aggregation. An oracle inequality provides the asymptotic behavior of this estimator. We investigate here the price for considering indirect observations.

متن کامل

Gaussian Markov Random Field Priors for Inverse Problems

In this paper, our focus is on the connections between the methods of (quadratic) regularization for inverse problems and Gaussian Markov random field (GMRF) priors for problems in spatial statistics. We begin with the most standard GMRFs defined on a uniform computational grid, which correspond to the oft-used discrete negative-Laplacian regularization matrix. Next, we present a class of GMRFs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Econometric Theory

سال: 2014

ISSN: 0266-4666,1469-4360

DOI: 10.1017/s0266466614000796